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Enhancing the predictive power of static structure in glassy systems  
by machine learning relative motion 
Hayato Shiba  (University of Hyogo) 
  Collaborators: 
      Masatoshi Hanai, Toyotaro Suzumura, and Takashi Shimokawabe (Univ. of Tokyo）

Structure-dynamics correspondence Machine learning (ML) for glasses

The future dynamics is encoded in the random structure.

Recently, ML turned out to be good for identifying the structure-dynamics 
correspondence. Especially, Graph neural networks (GNNs) model, 
proposed by V. Bapst et al.  [Nat. Phys. 2020]  performed the best. ARTICLESNATURE PHYSICS

any other thermodynamic quantity is provided to the network,  
and while the network does not directly predict the value of τg for 
the various state points, it can readily be obtained via standard 
analysis (Fig. 1c).

We find strong generalization in the glassy regime: models 
trained at a state point within the glassy phase (below T = 0.50) 
maintain their prediction quality at other state points within the 
glassy phase. In particular, the performance of a graph network 
trained at T = 0.47 steadily increases as the test temperature is low-
ered (Fig. 3d), and its performance at T = 0.44 is almost the same as 
the one of a network directly trained at this temperature.

Above the glassy phase (T ≥ 0.50), the prediction quality of mod-
els trained at low temperature deteriorates quickly. This is only the 
case, however, for the median of the ten identically trained models. 
As is typical for neural networks, individual models exhibit very dif-
ferent behaviours: some generalize at least partly to high tempera-
tures, while others perform consistently below a random baseline. 
A closer investigation reveals that models generalize better when 
they are robust to changes in the number of graph edges caused by 
the changing density. Correspondingly, linearly re-scaling the num-
ber of connections as a function of temperature can substantially 
improve the generalization performance (Supplementary Fig. 26).

Predicting propensity under shear stress
Understanding and predicting the mechanical properties of materi-
als such as glasses is another grand challenge of practical impor-
tance37. Defects and soft spots are known to be connected to 
plastic rearrangement locations9,38, and previous machine learning 
approaches (SVMs) have shown capacity to infer such predictors, 
again using handcrafted features39. Here we demonstrate graph 
networks’ ability to internalize and predict propensity during shear 
stress to uncover future soft spots.

With the same equilibrated configurations used to predict pro-
pensity, we perform athermal quasi-static (AQS)40 simulations 
(described in detail in the Methods) to explore how the configura-
tions rearrange when the periodic box is subject to a shear stress 
along one of its axes. At a given tilt, we train models to predict 
the displacement of each particle with respect to its neighbouring  
particles11 as the tilt is increased by 4%.

Figure 4a shows that the graph network again outperforms both 
the SVM and the physics-inspired baselines based on the potential 
energy of each particle and the soft modes of the system41 (except for 
tilts near the thermally equilibrated system, in the linear relaxation 
regime, where the soft modes baseline—also a linear approach—
performs as well as the graph network). The quality of the graph  
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Fig. 3 | Thermal experiments results. a,b, Pearson correlation coefficient of propensity predictions for a fixed state point with T!=!0.44 (a) and 
various state points at a fixed timescale t!=!τg (b; vertical grey dashed line in a). Each point and its error bars shows the median, best and worst of ten 
independently trained models. The shaded region indicates the upper bound on the correlation values, related to the finite number of trajectories used 
to construct each test label (Supplementary Fig. 3). Our method (GNN) is superior to other machine learning (convolutional network (CNN), SVM) and 
physics (soft modes (SM), Debye–Waller (DW), potential energy (PE)) methods, as described in the main text. c, Four-point correlation function χ4(t) 
as a function of time (from left to right T!=!0.50, T!=!0.47, T!=!0.44) for the simulation, GNN and SVM. Larger values indicate larger spatial correlations in 
the dynamics. d, GNN generalization to state points not seen during training (t!=!τg). The four states used for training are indicated by coloured diamonds 
on the curve. Error bars are as in a. e, Linear interpolation of the propensity predicted by the GNN and the 10% most mobile particles (black) in a two-
dimensional slice through the simulation box.
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any other thermodynamic quantity is provided to the network,  
and while the network does not directly predict the value of τg for 
the various state points, it can readily be obtained via standard 
analysis (Fig. 1c).
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maintain their prediction quality at other state points within the 
glassy phase. In particular, the performance of a graph network 
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stress to uncover future soft spots.
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regime, where the soft modes baseline—also a linear approach—
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Fig. 3 | Thermal experiments results. a,b, Pearson correlation coefficient of propensity predictions for a fixed state point with T!=!0.44 (a) and 
various state points at a fixed timescale t!=!τg (b; vertical grey dashed line in a). Each point and its error bars shows the median, best and worst of ten 
independently trained models. The shaded region indicates the upper bound on the correlation values, related to the finite number of trajectories used 
to construct each test label (Supplementary Fig. 3). Our method (GNN) is superior to other machine learning (convolutional network (CNN), SVM) and 
physics (soft modes (SM), Debye–Waller (DW), potential energy (PE)) methods, as described in the main text. c, Four-point correlation function χ4(t) 
as a function of time (from left to right T!=!0.50, T!=!0.47, T!=!0.44) for the simulation, GNN and SVM. Larger values indicate larger spatial correlations in 
the dynamics. d, GNN generalization to state points not seen during training (t!=!τg). The four states used for training are indicated by coloured diamonds 
on the curve. Error bars are as in a. e, Linear interpolation of the propensity predicted by the GNN and the 10% most mobile particles (black) in a two-
dimensional slice through the simulation box.
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any other thermodynamic quantity is provided to the network,  
and while the network does not directly predict the value of τg for 
the various state points, it can readily be obtained via standard 
analysis (Fig. 1c).

We find strong generalization in the glassy regime: models 
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maintain their prediction quality at other state points within the 
glassy phase. In particular, the performance of a graph network 
trained at T = 0.47 steadily increases as the test temperature is low-
ered (Fig. 3d), and its performance at T = 0.44 is almost the same as 
the one of a network directly trained at this temperature.

Above the glassy phase (T ≥ 0.50), the prediction quality of mod-
els trained at low temperature deteriorates quickly. This is only the 
case, however, for the median of the ten identically trained models. 
As is typical for neural networks, individual models exhibit very dif-
ferent behaviours: some generalize at least partly to high tempera-
tures, while others perform consistently below a random baseline. 
A closer investigation reveals that models generalize better when 
they are robust to changes in the number of graph edges caused by 
the changing density. Correspondingly, linearly re-scaling the num-
ber of connections as a function of temperature can substantially 
improve the generalization performance (Supplementary Fig. 26).

Predicting propensity under shear stress
Understanding and predicting the mechanical properties of materi-
als such as glasses is another grand challenge of practical impor-
tance37. Defects and soft spots are known to be connected to 
plastic rearrangement locations9,38, and previous machine learning 
approaches (SVMs) have shown capacity to infer such predictors, 
again using handcrafted features39. Here we demonstrate graph 
networks’ ability to internalize and predict propensity during shear 
stress to uncover future soft spots.

With the same equilibrated configurations used to predict pro-
pensity, we perform athermal quasi-static (AQS)40 simulations 
(described in detail in the Methods) to explore how the configura-
tions rearrange when the periodic box is subject to a shear stress 
along one of its axes. At a given tilt, we train models to predict 
the displacement of each particle with respect to its neighbouring  
particles11 as the tilt is increased by 4%.

Figure 4a shows that the graph network again outperforms both 
the SVM and the physics-inspired baselines based on the potential 
energy of each particle and the soft modes of the system41 (except for 
tilts near the thermally equilibrated system, in the linear relaxation 
regime, where the soft modes baseline—also a linear approach—
performs as well as the graph network). The quality of the graph  
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Fig. 3 | Thermal experiments results. a,b, Pearson correlation coefficient of propensity predictions for a fixed state point with T!=!0.44 (a) and 
various state points at a fixed timescale t!=!τg (b; vertical grey dashed line in a). Each point and its error bars shows the median, best and worst of ten 
independently trained models. The shaded region indicates the upper bound on the correlation values, related to the finite number of trajectories used 
to construct each test label (Supplementary Fig. 3). Our method (GNN) is superior to other machine learning (convolutional network (CNN), SVM) and 
physics (soft modes (SM), Debye–Waller (DW), potential energy (PE)) methods, as described in the main text. c, Four-point correlation function χ4(t) 
as a function of time (from left to right T!=!0.50, T!=!0.47, T!=!0.44) for the simulation, GNN and SVM. Larger values indicate larger spatial correlations in 
the dynamics. d, GNN generalization to state points not seen during training (t!=!τg). The four states used for training are indicated by coloured diamonds 
on the curve. Error bars are as in a. e, Linear interpolation of the propensity predicted by the GNN and the 10% most mobile particles (black) in a two-
dimensional slice through the simulation box.
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Prediction accuracy for “particle propensity”

node - particle type (A or B)

edge - relative position

node - particle motion

OUTPUTINPUT

edge - relative motion

BOnd TArgeting Network (BOTAN)   
   H. Shiba, M. Hanai, T. Suzumura, and T. Shimokawabe, J. Chem. Phys. 158, 084503 (2023) 

          500 amorphous configurations of 3D  80:20 Kob-Andersen LJ (KALJ)    [newly computed]

                    N = 4096 [A - 3277, B - 819],   relaxed for  ~40  
              ➡   400 initial configurations  for training,  100 for tests
          Isoconfigurational ensemble (32 runs for each)
                  by using different initial velocities obeying Gaussian distribution

          What we want to “predict” = “Particle propensity”
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2. Dataset

3. GNN model

4. Performance of  BOTAN

Training + test  using 3D KALJ, T=0.44
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“Prediction accuracy” 
  Pearson correlation coefficient

➡  BOTAN achieves high prediction accuracy by autonomously interpreting how particle motion and relative     
  motion affect each other. Currently one of the best machine learning models for machine learning glasses. 

Code & Dataset are available  —  https://github.com/h3-Open-BDEC/pyg_botan

ガラスとグラフニューラルネットワーク  
　　- 究極の長時間ダイナミクスへのデータ駆動科学による挑戦
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AI for HPC & HPC for AI

Simulation AI

実験・観測

‣ AI による帰納的予測の精度向上 
‣ 予測結果の再利用 または 併用したシミュレーション技術開発 
‣ （実験・観測とのデータ同化）

supercomputer
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本日の話

・物理学の研究対象としてのガラス   　̶  超長時間のダイナミクス 

・ガラスダイナミクスの機械学習予測　̶   この数年間の発展 

・ガラスのGNN での（簡単な）学習速度測定 
-   NVIDIA & AMD GPUs
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ガラス =「流れなくなった液体」?「乱れた固体」?
“乱れ” (featureless structure) を扱う難しさ、深遠さ

2021年ノーベル賞 Giulio Parisi 「レプリカ対称性の破れ」
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ピッチドロップ実験
＠Trinity College Dublin

十数年おきの落下
⌘ ⇠ 2 ⇥ 107 Pa · s

begun in 1944 by an unknown colleague of the 
Nobel prizewinner Ernest Walton while he was in 
the physics department of Trinity College (Wikipedia). 

2013 broadcasted by Prof. Shane Bergin  
• Nature News
• The Independent (UK)
• Radio Lab
• Wall Street Journal
• The Register
• Circa
• Huffington Post
• The Slate
• Irish Times
• RTE News
• International Business Times
• The Atlantic
• Discover Magazine
• The Australian
• Scientific American

• Times of India
• NBC Bay Area
• National Geographic
• Die Zeit
• Fox News
• NewScientist
• Daily Mail
• Business Insider
• Phys.org
• CNET
• ScienceNews
• The Verge
• GizMag
• New Scientist

http://www.nature.com/news/world-s-slowest-moving-drop-caught-on-camera-at-last-1.13418
http://www.independent.co.uk/news/science/the-pitch-drops-science-experiment-going-for-69-years-caught-on-film-for-first-time-8720320.html
http://www.radiolab.org/story/267176-never-quite-now/
http://online.wsj.com/news/articles/SB10001424127887323971204578626162396965242
http://www.theregister.co.uk/2013/07/19/fever_pitch_as_dublin_tar_drop_fall_captured_by_webcam/
http://cir.ca/news/pitch-drop-experiment-on-camera
http://www.huffingtonpost.com/2013/07/18/pitch-drop-experiment-single-drip-69-years-video_n_3618195.html?ir=Science
http://www.slate.com/blogs/the_slatest/2013/07/18/pitch_drop_experiment_video_science_world_aflutter_after_experiment_pays.html
http://www.irishtimes.com/news/science/a-trinity-world-first-for-a-blob-of-bitumen-1.1471516
http://www.rte.ie/news/2013/0717/463097-trinity-college-dublin-pitch-experiment/
http://www.ibtimes.com/13-best-science-videos-2013-capella-string-theory-space-oddity-orbit-videos-1514558
http://www.theatlantic.com/technology/archive/2013/07/the-3-most-exciting-words-in-science-right-now-the-pitch-dropped/277919/
http://blogs.discovermagazine.com/d-brief/2013/07/19/drip-from-tar-pitch-experiment-seen-for-the-first-time-ever/#.UrRkavRSaQA
http://www.theaustralian.com.au/sport/opinion/shane-watson-experiment-a-slow-burner/story-fnb58rpk-1226682305004
http://www.scientificamerican.com/article.cfm?id=worlds-slowest-moving-drop-caught-on-camera-at-last
http://articles.timesofindia.indiatimes.com/2013-07-21/science/40708179_1_pitch-experiment-tar
http://www.nbcbayarea.com/news/national-international/69-Year-Pitch-Drop-Experiment-Caught-on-Camera-216035901.html
http://news.nationalgeographic.com/news/2013/07/130719-tar-pitch-longest-running-experiments-science/
http://www.zeit.de/wissen/2013-07/pechtropfenexperiment-video-dublin
http://www.foxnews.com/science/2013/07/19/worlds-slowest-moving-drop-caught-on-camera/
http://www.newscientist.com/article/dn23896-pitch-drop-caught-on-camera-after-69year-wait.html#.UrRk8PRSaQA
http://www.dailymail.co.uk/sciencetech/article-2369074/Pitch-ure-perfect-Scientists-capture-drop-falling-tar-camera-time-70-YEARS.html
http://www.businessinsider.com/tar-drop-has-been-falling-for-almost-70-years-2013-7
http://phys.org/news/2013-07-scientists-capture-pitch-camera-video.html
http://news.cnet.com/8301-17938_105-57594322-1/69-year-experiment-captures-pitch-tar-drop/
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single-particle displacements recorded during the simulation
of a binary Lennard-Jones mixture in two dimensions. This
type of measurement, out of reach of most experimental
techniques that study the liquid state, reveals that dynamics
might be different from one particle to another (transiently).
More importantly, Fig. 7 also unambiguously reveals the
existence of spatial correlations between these dynamic
fluctuations. The presence of nontrivial spatiotemporal fluc-
tuations in supercooled liquids is called ‘‘dynamic heteroge-
neity’’ (Ediger, 2000; Berthier et al., 2011). The phenomenon
has become a substantial component of the field of the glass
transition, and computer simulations have naturally played an
important role since they reveal the heterogeneous nature of
the relaxation much more directly than experiments. We
discuss the phenomenon of dynamic heterogeneity in more
detail in the next section.

III. DYNAMIC HETEROGENEITY

A. Existence of spatiotemporal dynamic fluctuations

A new facet of the relaxational behavior of supercooled
liquids has emerged in the last decade thanks to a consider-
able experimental and theoretical effort. It is called dynamic
heterogeneity and now plays a central role in modern de-
scriptions of glassy liquids (Ediger, 2000). As anticipated in
the discussion of Fig. 7 in the previous section, the phenome-
non of dynamic heterogeneity is related to the spatiotemporal
fluctuations of the dynamics. Initial motivations stemmed
from the search for an explanation of the nonexponentiality
of relaxation processes in supercooled liquids, related to the
existence of a broad relaxation spectrum. Two natural, but
fundamentally different, explanations can be put forward.

(1) The relaxation is locally exponential, but the typical
relaxation time scale varies spatially. Hence, global correla-
tion or response functions become nonexponential upon spa-
tial averaging over this spatial distribution of relaxation
times. (2) The relaxation is complicated and inherently non-
exponential, even locally. Experimental and theoretical works
(Ediger, 2000) suggest that both mechanisms are likely at
play, but definitely conclude that relaxation is spatially het-
erogeneous, with regions that are faster and slower than the
average. Since supercooled liquids are ergodic systems, a
slow region will eventually become fast, and vice versa. A
physical characterization of dynamic heterogeneity entails
the determination of the typical lifetime of the heterogene-
ities, as well as their typical length scale.

A clearer and more direct confirmation of the heteroge-
neous character of the dynamics also stems from simulation
studies. For example, whereas the simulated average mean-
squared displacements are smooth functions of time (see
Fig. 5), time signals for individual particles clearly exhibit
specific features that are not observed unless dynamics is
resolved in both space and time. These features are displayed
in Fig. 8. What do we see? We mainly observe that particle
trajectories are not smooth but rather composed of a succes-
sion of long periods of time where particles simply vibrate
around well-defined locations, separated by rapid jumps.
Vibrations were previously inferred from the plateau ob-
served at intermediate times in the mean-squared displace-
ments of Fig. 5, but the existence of jumps that are clearly
statistically widely distributed in time cannot be guessed from
averaged quantities only. The fluctuations in Fig. 8 suggest,
and direct measurements confirm, the importance played by
fluctuations around the averaged dynamical behavior.

A simple type of such fluctuations has been studied in
much detail. When looking at Fig. 8, it is indeed natural to
ask, for any given time, what is the distribution of particle
displacements? This is quantified by the self-part of the
van Hove function defined as
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FIG. 7 (color online). Spatial map of single-particle displacements
in the simulation of a binary mixture of Lennard-Jones mixture in
two dimensions. Arrows show the displacement of each particle in a
trajectory of length comparable to the structural relaxation time.
The map reveals the existence of particles with different mobilities
during relaxation, but also the existence of spatial correlations
between these dynamic fluctuations.

FIG. 8 (color online). Time-resolved squared displacements of
individual particles in a simple model of a glass-forming liquid
composed of Lennard-Jones particles near the fitted mode-coupling
critical temperature. The average is shown as a smooth full line.
Trajectories are composed of long periods of time during which
particles vibrate around well-defined positions, separated by rapid
jumps that are widely distributed in time, underlying the importance
of dynamic fluctuations.
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single-particle displacements recorded during the simulation
of a binary Lennard-Jones mixture in two dimensions. This
type of measurement, out of reach of most experimental
techniques that study the liquid state, reveals that dynamics
might be different from one particle to another (transiently).
More importantly, Fig. 7 also unambiguously reveals the
existence of spatial correlations between these dynamic
fluctuations. The presence of nontrivial spatiotemporal fluc-
tuations in supercooled liquids is called ‘‘dynamic heteroge-
neity’’ (Ediger, 2000; Berthier et al., 2011). The phenomenon
has become a substantial component of the field of the glass
transition, and computer simulations have naturally played an
important role since they reveal the heterogeneous nature of
the relaxation much more directly than experiments. We
discuss the phenomenon of dynamic heterogeneity in more
detail in the next section.
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A new facet of the relaxational behavior of supercooled
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able experimental and theoretical effort. It is called dynamic
heterogeneity and now plays a central role in modern de-
scriptions of glassy liquids (Ediger, 2000). As anticipated in
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non of dynamic heterogeneity is related to the spatiotemporal
fluctuations of the dynamics. Initial motivations stemmed
from the search for an explanation of the nonexponentiality
of relaxation processes in supercooled liquids, related to the
existence of a broad relaxation spectrum. Two natural, but
fundamentally different, explanations can be put forward.

(1) The relaxation is locally exponential, but the typical
relaxation time scale varies spatially. Hence, global correla-
tion or response functions become nonexponential upon spa-
tial averaging over this spatial distribution of relaxation
times. (2) The relaxation is complicated and inherently non-
exponential, even locally. Experimental and theoretical works
(Ediger, 2000) suggest that both mechanisms are likely at
play, but definitely conclude that relaxation is spatially het-
erogeneous, with regions that are faster and slower than the
average. Since supercooled liquids are ergodic systems, a
slow region will eventually become fast, and vice versa. A
physical characterization of dynamic heterogeneity entails
the determination of the typical lifetime of the heterogene-
ities, as well as their typical length scale.

A clearer and more direct confirmation of the heteroge-
neous character of the dynamics also stems from simulation
studies. For example, whereas the simulated average mean-
squared displacements are smooth functions of time (see
Fig. 5), time signals for individual particles clearly exhibit
specific features that are not observed unless dynamics is
resolved in both space and time. These features are displayed
in Fig. 8. What do we see? We mainly observe that particle
trajectories are not smooth but rather composed of a succes-
sion of long periods of time where particles simply vibrate
around well-defined locations, separated by rapid jumps.
Vibrations were previously inferred from the plateau ob-
served at intermediate times in the mean-squared displace-
ments of Fig. 5, but the existence of jumps that are clearly
statistically widely distributed in time cannot be guessed from
averaged quantities only. The fluctuations in Fig. 8 suggest,
and direct measurements confirm, the importance played by
fluctuations around the averaged dynamical behavior.

A simple type of such fluctuations has been studied in
much detail. When looking at Fig. 8, it is indeed natural to
ask, for any given time, what is the distribution of particle
displacements? This is quantified by the self-part of the
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single-particle displacements recorded during the simulation
of a binary Lennard-Jones mixture in two dimensions. This
type of measurement, out of reach of most experimental
techniques that study the liquid state, reveals that dynamics
might be different from one particle to another (transiently).
More importantly, Fig. 7 also unambiguously reveals the
existence of spatial correlations between these dynamic
fluctuations. The presence of nontrivial spatiotemporal fluc-
tuations in supercooled liquids is called ‘‘dynamic heteroge-
neity’’ (Ediger, 2000; Berthier et al., 2011). The phenomenon
has become a substantial component of the field of the glass
transition, and computer simulations have naturally played an
important role since they reveal the heterogeneous nature of
the relaxation much more directly than experiments. We
discuss the phenomenon of dynamic heterogeneity in more
detail in the next section.
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A new facet of the relaxational behavior of supercooled
liquids has emerged in the last decade thanks to a consider-
able experimental and theoretical effort. It is called dynamic
heterogeneity and now plays a central role in modern de-
scriptions of glassy liquids (Ediger, 2000). As anticipated in
the discussion of Fig. 7 in the previous section, the phenome-
non of dynamic heterogeneity is related to the spatiotemporal
fluctuations of the dynamics. Initial motivations stemmed
from the search for an explanation of the nonexponentiality
of relaxation processes in supercooled liquids, related to the
existence of a broad relaxation spectrum. Two natural, but
fundamentally different, explanations can be put forward.

(1) The relaxation is locally exponential, but the typical
relaxation time scale varies spatially. Hence, global correla-
tion or response functions become nonexponential upon spa-
tial averaging over this spatial distribution of relaxation
times. (2) The relaxation is complicated and inherently non-
exponential, even locally. Experimental and theoretical works
(Ediger, 2000) suggest that both mechanisms are likely at
play, but definitely conclude that relaxation is spatially het-
erogeneous, with regions that are faster and slower than the
average. Since supercooled liquids are ergodic systems, a
slow region will eventually become fast, and vice versa. A
physical characterization of dynamic heterogeneity entails
the determination of the typical lifetime of the heterogene-
ities, as well as their typical length scale.

A clearer and more direct confirmation of the heteroge-
neous character of the dynamics also stems from simulation
studies. For example, whereas the simulated average mean-
squared displacements are smooth functions of time (see
Fig. 5), time signals for individual particles clearly exhibit
specific features that are not observed unless dynamics is
resolved in both space and time. These features are displayed
in Fig. 8. What do we see? We mainly observe that particle
trajectories are not smooth but rather composed of a succes-
sion of long periods of time where particles simply vibrate
around well-defined locations, separated by rapid jumps.
Vibrations were previously inferred from the plateau ob-
served at intermediate times in the mean-squared displace-
ments of Fig. 5, but the existence of jumps that are clearly
statistically widely distributed in time cannot be guessed from
averaged quantities only. The fluctuations in Fig. 8 suggest,
and direct measurements confirm, the importance played by
fluctuations around the averaged dynamical behavior.

A simple type of such fluctuations has been studied in
much detail. When looking at Fig. 8, it is indeed natural to
ask, for any given time, what is the distribution of particle
displacements? This is quantified by the self-part of the
van Hove function defined as
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FIG. 7 (color online). Spatial map of single-particle displacements
in the simulation of a binary mixture of Lennard-Jones mixture in
two dimensions. Arrows show the displacement of each particle in a
trajectory of length comparable to the structural relaxation time.
The map reveals the existence of particles with different mobilities
during relaxation, but also the existence of spatial correlations
between these dynamic fluctuations.

FIG. 8 (color online). Time-resolved squared displacements of
individual particles in a simple model of a glass-forming liquid
composed of Lennard-Jones particles near the fitted mode-coupling
critical temperature. The average is shown as a smooth full line.
Trajectories are composed of long periods of time during which
particles vibrate around well-defined positions, separated by rapid
jumps that are widely distributed in time, underlying the importance
of dynamic fluctuations.
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The connection between structure and dynamics in super-
cooled liquids and glasses is one of the most intriguing
puzzles in condensed matter physics. The conundrum:

close to the glass transition, the dynamics slow down dramatically
and become heterogeneous1,2 while the structure appears largely
unperturbed. Largely unperturbed, however, is not the same as
unperturbed, and many studies have attempted to identify slow
local structures by exploiting dynamical information3,4. Unsu-
pervised machine learning (UML) techniques may provide a
novel way forward for shedding light on this problem.

Machine learning (ML) techniques are rapidly becoming a
game-changer in the study of materials. Examples include
speeding up computationally expensive calculations5, accurately
distinguishing different crystal phases6,7, and even developing
design rules for structural and material properties8. An exciting
development is the design of UML algorithms that can autono-
mously classify particles based on patterns in their local envir-
onment9–11, even in disordered systems12. A key strength of these
UML approaches is that they can find variations in local structure
without any a priori knowledge of what might appear, opening
the door to finding new, unanticipated structures.

The idea of an autonomous algorithm that picks out structural
heterogeneities is a particularly appealing one in the context of
supercooled liquids. In this field, the last few years have seen a
frantic hunt for local structural features that can be interpreted as
the underlying cause for dynamical heterogeneities. To this end, a
number of studies have examined the prevalence and lifetimes of
a large variety of locally favored structures13,14, correlated
dynamics with local order parameters based on, e.g., tetra-
hedrality or packing efficiency15–17, and have looked at the
dynamical effects of promoting specific local features18–20.

A major advance in correlating structure and dynamics was
made through the use of supervised ML techniques. In particular,
a number of studies have demonstrated that support-vector
machines could be taught to recognize more mobile particles in
several glass formers21–24. More recently, it was shown that even
better dynamical predictions could be made using both con-
volutional neural networks and graph neural networks25. How-
ever, in order to train these algorithms, data linking structure to
future dynamics had to be used. Methods that can autonomously
detect purely structural heterogeneities offer an unbiased fresh
look at the problem.

Here we show that a simple, efficient UML algorithm that we
recently developed10 for detecting crystalline structure can be
harnessed to detect structural heterogeneities in glasses. Our
algorithm—which requires only a single snapshot as input—uses
bond-order parameters (BOPs) to encode the local environments
of the particles. Combining a neural network-based autoencoder
with Gaussian mixture models, it then autonomously designs a
structural order parameter capable of detecting the largest
structural variation in the system.

We test the performance of the algorithm on three archetypical
glass forming systems: binary hard spheres, Wahnström, and

Kob–Andersen. These three model systems have been extensively
studied in the context of fundamental glass formers, and have
proven extremely valuable in unraveling many aspects of the glass
transition (see e.g. refs. 3,26,27). Additionally, extensive past
research has indicated that both binary hard spheres and the
Wahnström model display a strong correlation between local
structure and dynamical slowdown3,28, while these correlations
are more nebulous for the Kob–Andersen model28. Collectively,
these models provide an ideal playground for testing the ability of
our UML technique to find local structural features in super-
cooled liquids.

Results
Setting up the UML algorithm. We construct configurations for
our UML analysis by running molecular dynamics simulations of
three glass formers inside the glassy regime. The glass formers we
consider are all three-dimensional models and include binary
hard spheres, Wahnström, and Kob–Andersen (see “Methods”
for more details). We then select one equilibrated configuration in
the glassy regime for each glass former to start our UML analysis.

The UML method we explore here is based on an algorithm we
recently developed10 for detecting crystalline structures. As
shown in Fig. 1, this analysis consists of three steps. First, the
local environment of each particle is encoded into a vector of
eight BOPs (see “Methods”). This local environment includes
information regarding (approximately) the first two shells of
neighbors. Secondly, an autoencoder is used to lower the
dimensionality of this vector. The autoencoder is a neural
network trained to reproduce its input as its output. This neural
network is especially designed to contain a “bottleneck” with a
lower dimensionality than the input vector, such that the network
is forced to compress the information, and subsequently
decompress it again. After training the autoencoder, we only
retain the compression part of the network, and use it as our
dimensionality reducer. Note that this algorithm allows for non-
linear transformations to a lower dimension. Third, the particles
are then grouped in this lower-dimensional space using Gaussian
mixture models. A full description of this algorithm is given in
the Supplementary Methods.

This UML algorithm has two main parameters that need to be
chosen: (i) the dimensionality of the bottleneck of the
autoencoder c and (ii) the number of Gaussian components NG
used to fit the distribution in the lower-dimensional space. To
choose the dimensionality of the bottleneck, we require that the
autoencoder reproduces at least 75% of the variance of the input
data. In Fig. 2a–c we show the fraction of variance explained
(FVE, see “Methods”) by the autoencoder as a function of c for
the chosen snapshots from all three models. Based on this
analysis, we choose c= 2 for both the binary hard spheres and the
Wahnström models, and c= 4 for the Kob–Andersen model. To
determine the number of Gaussians NG, we measure the Bayesian
Information Criterion (BIC, see Supplementary Methods) as a
function of NG, and plot it for each snapshot in Fig. 2d–f. The
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Fig. 1 Schematic representation of the unsupervised machine learning method. In this method, the local environment of a particle is encoded in a vector
(Q) of bond-order parameters, which is used as the input for an artificial neural network trained to reduce its dimensionality. The resulting distribution of
particle environments in the lower dimension is clustered using a Gaussian mixture model. Finally, particles are assigned a probability of belonging to one of
the two clusters, and colored accordingly.
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The connection between structure and dynamics in super-
cooled liquids and glasses is one of the most intriguing
puzzles in condensed matter physics. The conundrum:

close to the glass transition, the dynamics slow down dramatically
and become heterogeneous1,2 while the structure appears largely
unperturbed. Largely unperturbed, however, is not the same as
unperturbed, and many studies have attempted to identify slow
local structures by exploiting dynamical information3,4. Unsu-
pervised machine learning (UML) techniques may provide a
novel way forward for shedding light on this problem.

Machine learning (ML) techniques are rapidly becoming a
game-changer in the study of materials. Examples include
speeding up computationally expensive calculations5, accurately
distinguishing different crystal phases6,7, and even developing
design rules for structural and material properties8. An exciting
development is the design of UML algorithms that can autono-
mously classify particles based on patterns in their local envir-
onment9–11, even in disordered systems12. A key strength of these
UML approaches is that they can find variations in local structure
without any a priori knowledge of what might appear, opening
the door to finding new, unanticipated structures.

The idea of an autonomous algorithm that picks out structural
heterogeneities is a particularly appealing one in the context of
supercooled liquids. In this field, the last few years have seen a
frantic hunt for local structural features that can be interpreted as
the underlying cause for dynamical heterogeneities. To this end, a
number of studies have examined the prevalence and lifetimes of
a large variety of locally favored structures13,14, correlated
dynamics with local order parameters based on, e.g., tetra-
hedrality or packing efficiency15–17, and have looked at the
dynamical effects of promoting specific local features18–20.

A major advance in correlating structure and dynamics was
made through the use of supervised ML techniques. In particular,
a number of studies have demonstrated that support-vector
machines could be taught to recognize more mobile particles in
several glass formers21–24. More recently, it was shown that even
better dynamical predictions could be made using both con-
volutional neural networks and graph neural networks25. How-
ever, in order to train these algorithms, data linking structure to
future dynamics had to be used. Methods that can autonomously
detect purely structural heterogeneities offer an unbiased fresh
look at the problem.

Here we show that a simple, efficient UML algorithm that we
recently developed10 for detecting crystalline structure can be
harnessed to detect structural heterogeneities in glasses. Our
algorithm—which requires only a single snapshot as input—uses
bond-order parameters (BOPs) to encode the local environments
of the particles. Combining a neural network-based autoencoder
with Gaussian mixture models, it then autonomously designs a
structural order parameter capable of detecting the largest
structural variation in the system.

We test the performance of the algorithm on three archetypical
glass forming systems: binary hard spheres, Wahnström, and

Kob–Andersen. These three model systems have been extensively
studied in the context of fundamental glass formers, and have
proven extremely valuable in unraveling many aspects of the glass
transition (see e.g. refs. 3,26,27). Additionally, extensive past
research has indicated that both binary hard spheres and the
Wahnström model display a strong correlation between local
structure and dynamical slowdown3,28, while these correlations
are more nebulous for the Kob–Andersen model28. Collectively,
these models provide an ideal playground for testing the ability of
our UML technique to find local structural features in super-
cooled liquids.

Results
Setting up the UML algorithm. We construct configurations for
our UML analysis by running molecular dynamics simulations of
three glass formers inside the glassy regime. The glass formers we
consider are all three-dimensional models and include binary
hard spheres, Wahnström, and Kob–Andersen (see “Methods”
for more details). We then select one equilibrated configuration in
the glassy regime for each glass former to start our UML analysis.

The UML method we explore here is based on an algorithm we
recently developed10 for detecting crystalline structures. As
shown in Fig. 1, this analysis consists of three steps. First, the
local environment of each particle is encoded into a vector of
eight BOPs (see “Methods”). This local environment includes
information regarding (approximately) the first two shells of
neighbors. Secondly, an autoencoder is used to lower the
dimensionality of this vector. The autoencoder is a neural
network trained to reproduce its input as its output. This neural
network is especially designed to contain a “bottleneck” with a
lower dimensionality than the input vector, such that the network
is forced to compress the information, and subsequently
decompress it again. After training the autoencoder, we only
retain the compression part of the network, and use it as our
dimensionality reducer. Note that this algorithm allows for non-
linear transformations to a lower dimension. Third, the particles
are then grouped in this lower-dimensional space using Gaussian
mixture models. A full description of this algorithm is given in
the Supplementary Methods.

This UML algorithm has two main parameters that need to be
chosen: (i) the dimensionality of the bottleneck of the
autoencoder c and (ii) the number of Gaussian components NG
used to fit the distribution in the lower-dimensional space. To
choose the dimensionality of the bottleneck, we require that the
autoencoder reproduces at least 75% of the variance of the input
data. In Fig. 2a–c we show the fraction of variance explained
(FVE, see “Methods”) by the autoencoder as a function of c for
the chosen snapshots from all three models. Based on this
analysis, we choose c= 2 for both the binary hard spheres and the
Wahnström models, and c= 4 for the Kob–Andersen model. To
determine the number of Gaussians NG, we measure the Bayesian
Information Criterion (BIC, see Supplementary Methods) as a
function of NG, and plot it for each snapshot in Fig. 2d–f. The
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Fig. 1 Schematic representation of the unsupervised machine learning method. In this method, the local environment of a particle is encoded in a vector
(Q) of bond-order parameters, which is used as the input for an artificial neural network trained to reduce its dimensionality. The resulting distribution of
particle environments in the lower dimension is clustered using a Gaussian mixture model. Finally, particles are assigned a probability of belonging to one of
the two clusters, and colored accordingly.
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any other thermodynamic quantity is provided to the network,  
and while the network does not directly predict the value of τg for 
the various state points, it can readily be obtained via standard 
analysis (Fig. 1c).

We find strong generalization in the glassy regime: models 
trained at a state point within the glassy phase (below T = 0.50) 
maintain their prediction quality at other state points within the 
glassy phase. In particular, the performance of a graph network 
trained at T = 0.47 steadily increases as the test temperature is low-
ered (Fig. 3d), and its performance at T = 0.44 is almost the same as 
the one of a network directly trained at this temperature.

Above the glassy phase (T ≥ 0.50), the prediction quality of mod-
els trained at low temperature deteriorates quickly. This is only the 
case, however, for the median of the ten identically trained models. 
As is typical for neural networks, individual models exhibit very dif-
ferent behaviours: some generalize at least partly to high tempera-
tures, while others perform consistently below a random baseline. 
A closer investigation reveals that models generalize better when 
they are robust to changes in the number of graph edges caused by 
the changing density. Correspondingly, linearly re-scaling the num-
ber of connections as a function of temperature can substantially 
improve the generalization performance (Supplementary Fig. 26).

Predicting propensity under shear stress
Understanding and predicting the mechanical properties of materi-
als such as glasses is another grand challenge of practical impor-
tance37. Defects and soft spots are known to be connected to 
plastic rearrangement locations9,38, and previous machine learning 
approaches (SVMs) have shown capacity to infer such predictors, 
again using handcrafted features39. Here we demonstrate graph 
networks’ ability to internalize and predict propensity during shear 
stress to uncover future soft spots.

With the same equilibrated configurations used to predict pro-
pensity, we perform athermal quasi-static (AQS)40 simulations 
(described in detail in the Methods) to explore how the configura-
tions rearrange when the periodic box is subject to a shear stress 
along one of its axes. At a given tilt, we train models to predict 
the displacement of each particle with respect to its neighbouring  
particles11 as the tilt is increased by 4%.

Figure 4a shows that the graph network again outperforms both 
the SVM and the physics-inspired baselines based on the potential 
energy of each particle and the soft modes of the system41 (except for 
tilts near the thermally equilibrated system, in the linear relaxation 
regime, where the soft modes baseline—also a linear approach—
performs as well as the graph network). The quality of the graph  
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Fig. 3 | Thermal experiments results. a,b, Pearson correlation coefficient of propensity predictions for a fixed state point with T!=!0.44 (a) and 
various state points at a fixed timescale t!=!τg (b; vertical grey dashed line in a). Each point and its error bars shows the median, best and worst of ten 
independently trained models. The shaded region indicates the upper bound on the correlation values, related to the finite number of trajectories used 
to construct each test label (Supplementary Fig. 3). Our method (GNN) is superior to other machine learning (convolutional network (CNN), SVM) and 
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the displacement of each particle with respect to its neighbouring  
particles11 as the tilt is increased by 4%.

Figure 4a shows that the graph network again outperforms both 
the SVM and the physics-inspired baselines based on the potential 
energy of each particle and the soft modes of the system41 (except for 
tilts near the thermally equilibrated system, in the linear relaxation 
regime, where the soft modes baseline—also a linear approach—
performs as well as the graph network). The quality of the graph  
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as a function of time (from left to right T!=!0.50, T!=!0.47, T!=!0.44) for the simulation, GNN and SVM. Larger values indicate larger spatial correlations in 
the dynamics. d, GNN generalization to state points not seen during training (t!=!τg). The four states used for training are indicated by coloured diamonds 
on the curve. Error bars are as in a. e, Linear interpolation of the propensity predicted by the GNN and the 10% most mobile particles (black) in a two-
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物理手法

他の手法を圧倒的凌駕 
   学習モデル  
      SVM, CNN  
   物理モデル 
      SM = 振動解析

（予測時間）
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single-particle displacements recorded during the simulation
of a binary Lennard-Jones mixture in two dimensions. This
type of measurement, out of reach of most experimental
techniques that study the liquid state, reveals that dynamics
might be different from one particle to another (transiently).
More importantly, Fig. 7 also unambiguously reveals the
existence of spatial correlations between these dynamic
fluctuations. The presence of nontrivial spatiotemporal fluc-
tuations in supercooled liquids is called ‘‘dynamic heteroge-
neity’’ (Ediger, 2000; Berthier et al., 2011). The phenomenon
has become a substantial component of the field of the glass
transition, and computer simulations have naturally played an
important role since they reveal the heterogeneous nature of
the relaxation much more directly than experiments. We
discuss the phenomenon of dynamic heterogeneity in more
detail in the next section.

III. DYNAMIC HETEROGENEITY

A. Existence of spatiotemporal dynamic fluctuations

A new facet of the relaxational behavior of supercooled
liquids has emerged in the last decade thanks to a consider-
able experimental and theoretical effort. It is called dynamic
heterogeneity and now plays a central role in modern de-
scriptions of glassy liquids (Ediger, 2000). As anticipated in
the discussion of Fig. 7 in the previous section, the phenome-
non of dynamic heterogeneity is related to the spatiotemporal
fluctuations of the dynamics. Initial motivations stemmed
from the search for an explanation of the nonexponentiality
of relaxation processes in supercooled liquids, related to the
existence of a broad relaxation spectrum. Two natural, but
fundamentally different, explanations can be put forward.

(1) The relaxation is locally exponential, but the typical
relaxation time scale varies spatially. Hence, global correla-
tion or response functions become nonexponential upon spa-
tial averaging over this spatial distribution of relaxation
times. (2) The relaxation is complicated and inherently non-
exponential, even locally. Experimental and theoretical works
(Ediger, 2000) suggest that both mechanisms are likely at
play, but definitely conclude that relaxation is spatially het-
erogeneous, with regions that are faster and slower than the
average. Since supercooled liquids are ergodic systems, a
slow region will eventually become fast, and vice versa. A
physical characterization of dynamic heterogeneity entails
the determination of the typical lifetime of the heterogene-
ities, as well as their typical length scale.

A clearer and more direct confirmation of the heteroge-
neous character of the dynamics also stems from simulation
studies. For example, whereas the simulated average mean-
squared displacements are smooth functions of time (see
Fig. 5), time signals for individual particles clearly exhibit
specific features that are not observed unless dynamics is
resolved in both space and time. These features are displayed
in Fig. 8. What do we see? We mainly observe that particle
trajectories are not smooth but rather composed of a succes-
sion of long periods of time where particles simply vibrate
around well-defined locations, separated by rapid jumps.
Vibrations were previously inferred from the plateau ob-
served at intermediate times in the mean-squared displace-
ments of Fig. 5, but the existence of jumps that are clearly
statistically widely distributed in time cannot be guessed from
averaged quantities only. The fluctuations in Fig. 8 suggest,
and direct measurements confirm, the importance played by
fluctuations around the averaged dynamical behavior.

A simple type of such fluctuations has been studied in
much detail. When looking at Fig. 8, it is indeed natural to
ask, for any given time, what is the distribution of particle
displacements? This is quantified by the self-part of the
van Hove function defined as
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FIG. 7 (color online). Spatial map of single-particle displacements
in the simulation of a binary mixture of Lennard-Jones mixture in
two dimensions. Arrows show the displacement of each particle in a
trajectory of length comparable to the structural relaxation time.
The map reveals the existence of particles with different mobilities
during relaxation, but also the existence of spatial correlations
between these dynamic fluctuations.

FIG. 8 (color online). Time-resolved squared displacements of
individual particles in a simple model of a glass-forming liquid
composed of Lennard-Jones particles near the fitted mode-coupling
critical temperature. The average is shown as a smooth full line.
Trajectories are composed of long periods of time during which
particles vibrate around well-defined positions, separated by rapid
jumps that are widely distributed in time, underlying the importance
of dynamic fluctuations.

596 Ludovic Berthier and Giulio Biroli: Theoretical perspective on the glass . . .

Rev. Mod. Phys., Vol. 83, No. 2, April–June 2011

L. Berthier & G. Biroli, RMP (2011)
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ガラスの未来予測の機械学習
構造（＝たった１枚の写真）の中から、究極的に長時間の「未来」が引き出せる？

不均一運動 
(future)

初期構造 
(now) SVMs, GNNs, 


Physics-based ML  etc…

→   深層学習による新しい物理の開拓、予測技術の活用



Latest models  
     supervised machine learning
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model # params.

GlassMLP 

     [Jung, Biroli, & Berthier]

 MLPs with 

    complex (input + loss)   ~ 650

Linear Regression

     [Boattini & Filion]  linear fitting   ~ 1000

CNN

      [Fan & Ma]  CNN (ResNet)   ~ O(105)

SE(3)-equivariant GNN

      [F. Landes et al]  GNN (node targets)   ~ O(106) 

Geo-GNN

      [Z. Jiang et al]

 GNN (node targets)   

                + self attention 

  ~ O(106) 

BOTAN

       [H. Shiba et al]

 GNN (node + edge 
targets)   ~ O(106) 

高い表現力  ↔    過学習の問題 
　　　　　　　  大量の学習データセット必要

効率な特徴抽出 
       — 様々な物理的制約・拘束条件

                    ・forward model  の利用   

       — 少ないデータ量　（ ~ MB) 


（ ~ GB) 

G. Jung, R. Alkemade, V. Bapst, D. Coslovich, L. Filion, F. Landes, A. J. Liu, F. S. Pezzicoli,

H. Shiba, G. Volpe, F. Zamponi, L. Berthier, and G. Biroli

その後  — “Roadmap” review, preprint arXiv:2311.14752  (2023, submitted)
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Latest models  
     supervised machine learning
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その後  — “Roadmap” review, preprint arXiv:2311.14752  (2023, submitted)
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input prediction
生成 
AI

prediction
生成 
AI

glass?
生成 
AI

‣ ガラス動力学の「未来予測」による超長時間のサンプリング?   
                (超低温ガラス,   “ultrastable” glass)

- 2020 年頃からいくつかの生成モデル利用の試み
VAE,  自己回帰モデル 

　        計算量的な困難、扱えるシステムサイズが極めて限定  

- 拡散モデル,  Flow Matching など最新手法の活用？

Roadmap review  —   将来展望 
G. Jung, R. Alkemade, V. Bapst, D. Coslovich, L. Filion, F. Landes, A. J. Liu, F. S. Pezzicoli,

H. Shiba, G. Volpe, F. Zamponi, L. Berthier, and G. Biroli,   preprint arXiv:2311.14752   (2023, submitted)



GPU 学習速度評価
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- NVIDIA Tesla V100 SXM (32 GB) @ UHyogo 

- NVIDIA A100 SXM (40 GB) on Wisteria-A @ UTokyo 

- NVIDIA A100 PCIe (40 GB) @ UTokyo 

- NVIDIA H100 HBM3 @ ITC, UTokyo  

- AMD Instinct MI100, MI210 PCIe @ ITC, UTokyo 

- １基単体の学習のみ

- DataLoader は測定から除外
- 今回は、推論のベンチマークはなし



node input 
   粒子の種類

backpropagation

edge input 
　 相対位置
(neighbors  )rij < 2.0σA
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edge output 
　　粒子間距離変化

node output  
　　粒子運動

BOnd TArgeting Network (BOTAN)  
 [Shiba et al., JCP 2023]

node

edge

EN

EN
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DE

node

edge
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x 2.6
x 3.4

BOTAN GNN  (MPNN) Benchmark 
PyTorch 2.2.1 +  PyTorch Geometric  2.5

ROCm 
6.0.2  

(bulid)

CUD  11.8 , 12.1, or 12.3
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NVIDIA H100 (HBM3) benchmarking 

xgemm
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NV H100 (HBM3)               vs                AMD MI210 (PCIe)
FP32/64 matrix 45.3 TFLOPsTF32 tensor 989 TFLOPs
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まとめ（にかえて）
ガラスの深層学習 

・超長時間のMDデータのGNN 学習 → 「最高精度」の予測 
- 何をAIが「理解」しているのか 
- どういった新たな「計算」「サンプリングに」使えるか 

・今後、重要になりうること 
- 表現力 + 少データでの学習  ̶  教師なし学習との組み合わせ 
- 大規模MD データへの活用 
- 生成モデルとのドッキング 

・GNN の性能評価 
- multi-arch Benchmarking に簡便 

H. Shiba, et al., J. Chem. Phys. 158, 184503 (2023). 

 Code & Dataset   https://github.com/h3-Open-BDEC/pyg_botan


G. Jung, R. Alkemade, V. Bapst, D. Coslovich, L. Filion, F. Landes, 

A. J. Liu, F. S. Pezzicoli, H. Shiba, G. Volpe, F. Zamponi, L. Berthier, and G. Biroli, 

      preprint arXiv:2311.14752 (2023)

      Dataset on Zenodo:  https://zenodo.org/records/10118191

https://github.com/h3-Open-BDEC/pyg_botan


Thank you !


